Did you know that nearly 173,000 terawatts of solar energy hit the earth continuously? It is more than 10,000 times the total energy usage in the world?

Yes, that is what sunlight does every day, according to the National Oceanic and Atmospheric Administration!

Generally, we do not take things seriously that are abundant, and the sunlight is one of them. However, considering the current trend, it seems that our future lies in finding more alternative energy like solar energy.

In 1954, Bell Laboratories developed the first silicon solar cell. That innovation triggered a series of discovery in the solar energy domain.

The space industry was the first to have started using solar technology in the 1960s to generate power for spacecraft. Solar cells powered the Vanguard 1, which was the first artificial earth satellite. It remained the oldest event of manmade satellite in orbit and logged a whopping 6 billion miles.

These days some innovators have come up with technologies that will most likely change our future in terms of how we get energy. 

Many of these technologies can convert sunlight into heat energy, that can be further converted into electricity.

In this post, let us look into 10 technological breakthroughs in the solar industry that will redefine the future of energy. Let us take a look at the list:

  1. Photovoltaic (PV)

When Alexandre Edmond Becquerel discovered the photovoltaic effect in 1839, who would have imagined that it will become one of the primary technologies for generating solar energy in the 21st century.

Alexandre decoded the photovoltaic effect, or how to create an electrical current in a conductor that gets direct sunlight.

Later, scientists carried out more advanced research to use the PV technology that can directly produce electricity. Now, it is possible to use, store, or convert the electricity for long-distance transmission. 

In simple words, PV devices are capable of converting sunlight into electrical energy. A single PV device is called a “cell.” PV cells are usually made from various types of silicon.

Generally, a single PV cell is small, and can typically produce around 1 or 2 watts of power. To increase the output of PV cells, then those cells are tied to chains to form larger units that are known these days as “modules” or “panels.” 

It is possible to use modules or panels individually or to connect several of them to form arrays. One or multiple arrays is connected to the electrical grid to complete a PV system.

In the current day, solar PV is mainly installed on rooftops at homes and businesses, and it directly generates electricity from solar energy. Solar thermal technologies convert the sun’s energy to generate heat, which further generates electricity.

  1. Concentrating Solar Power (CSP)

Concentrating Solar Power or CSP got its name as the technology concentrates sunlight to generate thermal energy, which is then used to generate electricity.

It means the CSP technology uses focused sunlight. The system generates electric power by using mirrors to concentrate the sun’s energy and convert it into heat. 

Subsequently, the heat goes through a traditional generator. The system comprises two parts: the first part collects solar energy and converts it into heat, and the second part converts the heat energy into electricity.

This technology takes three alternative technological approaches: trough systems, power tower systems, and dish/engine systems.

We can use CSP solar power systems for providing power to villages (10 kilowatts) or through grid-connected applications (up to 100 megawatts). Some systems use thermal storage during cloudy days or at night. 

These features, coupled with record solar-to-electric conversion efficiencies, make CSP technology an attractive renewable energy option, particularly in the Southwest and other sunbelt regions in the world.  

If we take the example of the US, CSP plants have been in use for more than a decade. The optimum use of CSP technology needs wide areas for collecting solar radiation to produce electricity at a commercial level.

  1. Solar Heating & Cooling (SHC)

The Solar Heating & Cooling (SHC) technology generates thermal energy (heat) for pool and space heating. 

It is, however, interesting to know that that SHC technology can be used for cooling as well.

So, how SHC technology works?

It collects the thermal energy from the sun and uses the heat to provide hot water, pool heating, cooling, and space heating for residential, commercial, and industrial users. 

Particularly, solar heating systems are economical for residential users. The are likely to get ROI between 3 and 6 years. In case of commercial usage, these can companies to lower energy bills and to manage long-term overhead costs.

These days, many companies across the world are manufacturing and installing SHC systems that significantly reduce dependency on imported fuels. 

The US has produced substantial SHC installations since 2010, where the systems covered between 10,000 and 50,000 ft on a single installed wall. It has opened up a large-scale opportunity to address the ventilation or space heating issue.

  1. MIT-invented Transparent, flexible solar cells using Graphene

Scientists at the Massachusetts Institute of Technology (MIT) have invented transparent and flexible graphene-based solar cells. It is feasible to mount those cells on different surfaces such as glass, plastic, tape, and paper. 

The MIT researchers made a comparison of their graphene electrode solar cells with other solar cells made from regular materials such as indium tin oxide (ITO) and aluminum . 

The experiment showed that the power conversion efficiency (PCE) of the new solar cells was significantly lower than regular solar panels. However, those cells are way better than earlier transparent solar cells. This is a progress for sure. 

Now, we can imagine a future where solar cells could be everywhere — on walls, windows, mobile phones, laptops, and more. 

This progress in solar technology has been possible by a method of depositing a one-atom-thick layer of graphene into the solar cell. 

The ability to use graphene is making it possible to get flexible, low-cost, and transparent solar cells that can turn any surface into a source of electric power!

  1. Simple Planar Optical Technology (SPOTlight) by Canadian inventor John Paul Morgan

Toronto-based John Paul Morgan, a Canadian inventor, has made himself counted among one of the top innovators of the latest solar technologies, called Simple Planar Optical Technology (SPOTlight).

According to Morgan, this technology can transform “found spaces” in urban areas into renewable energy sources. 

A few examples of found spaces are:

  • Blinds
  • Building materials
  • Curtain walls
  • Canopies
  • Skylights
  • Windows.

Also, the translucent PV sunshades can blend with the designed elements in an aesthetic environment. 

SPOTlight targets customers, who want to visibly improve their energy sustainability. Also, color LEDs can be programmed and easily integrated to turn the solar panels into a light source and digital display.

The main advantages of this technology are: 

  • The ability to capture thermal energy and using it to heat or cool the interior space. 
  • Improving workplace productivity and 
  • Saving electricity.

Morgan and his company have developed optics that are in the panel, and they are paper-thin. Thick panels need more raw material and can be expensive. With this innovation, the solar industry is heading to a future where the cost of energy may come down to almost zero.

  1. Floating Panels/Floating Solar Farms

In many countries across the world, there is not enough space to install ground-mount solar systems. Authorities in these countries, often look for alternative ecological solutions. 

Keeping this problem in mind, a French company Ciel & Terre International has been producing floating solar systems since 2011. 

The company manufactures hydrelio floating PV system that allows installing standard PV panels on large water bodies. It is possible to install the system on quarry lakes, drinking water reservoirs, tailing ponds, irrigation canals, and hydroelectric dam reservoirs.

This technology is a simple and affordable alternative to ground-mounted solar systems, and especially suitable for water-intensive industries that strictly avoid wasting either land or water.

According to the company, the system is easy to install and dismantle and can be adjusted with any electrical configuration. It is also scalable from low- to high-power generation without any tools or heavy equipment. In addition, the system is eco-friendly, recyclable, and cost-effective.

As of now, the system has been installed in the UK. The company is also set to work on deploying  floating solar farms in countries such as India, Japan, and France.

  1. Transparent Solar Cells that could power Mobile phones and Skyscrapers

MIT scientists have made transparent solar cells that could make ordinary items, such as windows and electronic gadgets, generate their own power.

These solar cells have the ability to absorb infrared and ultraviolet light only. Visible light goes through the cells without any obstruction, and that is why human eyes do not know about its existence. 

This new solar transparent PV technology is capable of keeping up with today’s solar cells, unlike other technologies due to their deployment methods. 

Ubiquitous Energy, a startup company in the Silicon Valley has successfully created transparent solar cells. They have made these cells using organic chemistry. Organic solar takes lesser manufacturing cost compared to the conventional silicon solar panels.

In the future, the company can use these invisible solar cells to provide electricity to the high-rise buildings. ClearView Power Technology that the company uses is a solar cell that can be used to coat windows and displays. Subsequently, the system can help them harvest artificial light and produce electricity.

  1. Flexible Parylene-based Solar cells as light as a soap bubble

MIT scientists are at it again! This time they have come up with a technology that has the most lightweight and thinnest solar cells ever made. 

During the initial experiment, the researchers used parylene, which is a regular flexible polymer and Dibutyl Phthalate (DBP), an organic material as the main layer for absorbing light. 

Unlike traditional cell manufacturing, this process is carried out in a vacuum chamber at room temperature, and without using any harsh chemicals. By using vapor deposition techniques for heat, pressure, and chemical reactions, the researchers have created an ultra-thin coating of a particular material. 

The ultra-thin cells have just 1/50th thickness of a human hair and 1/1000th of the thickness of existing glass-based cells. However, the cells have the ability to convert sunlight into electricity.

Parylene is a plastic coating that is commercially available and widely used for purposes such as protecting printed circuit boards and implanted biomedical devices from environmental damage. 

  1. Bacteria-powered Solar Cell that can function even under overcast skies

Researchers of the University of British Columbia have developed an inexpensive and sustainable way to build solar cells using a type of bacteria that is capable of converting light into energy.

Initial testing shows that the cells can work efficiently both in dim and bright light. These cells can generate solar power even under cloudy skies. Moreover, the cells can generate a current that is stronger than any such instance recorded from a similar device.

This technology is suitable to deploy in areas like Canada and Northern Europe that often have cloudy skies. Other environments, including deep-sea, and mines, could also be considered for implementation.

This innovation may have taken a great stride toward wider adoption of solar power in areas like British Columbia and parts of northern Europe where cloudy skies are common. 

  1. Solar Panels with Graphene coating that generates Electricity from Rain Drops by China

Finally, the last in our list and perhaps the most innovative one is a technology developed by scientists from China. They have created a new type of solar panel that is capable of generating electricity from raindrops!

By applying a thin layer of graphene, the solar panel can effectively produce power from rain.  

The raindrops contain salt, which splits into ions — sodium, calcium, and ammonium —  making graphene and water a suitable combination for producing energy. 

The thin layers that scientists energy use have variance between them and this variance is strong enough to generate electricity. 

If we go by the scientists’ opinion, this new technology could lead to designing advanced all-weather solar cells.

Closing Words

No one can deny the fact that our current ways of producing energy need an overhaul for various reasons. 

The first major reason is traditional energy sources have limited supply such as petroleum and other fossil fuel. Besides, many countries are still dependent on foreign oil and coal supplies.

The second reason is all of the conventional energy systems release greenhouse gases and other pollutants that have serious health hazards.

This is why innovative technologies listed in this post, starting from PV, floating solar farms to graphene-coated solar panels can provide great solutions to our energy-deficiency.

These technologies can bring solar energy close to both residential and commercial users by bringing down the price. Due to this reason alone, solar energy is increasingly becoming an economical energy option for homeowners and businesses. 

There are still obstacles in many countries because of unfavorable or lack of solar policies, and also soft cost issues such as zoning, permitting, and installing a power grid. Overcoming these issues will make solar energy a mainstream and affordable option. The silver lining is that things are already moving toward a positive direction.